“ToRC Misinformation in Postings about MHF” by George Harpole, Ph.D.

GeorgeHarpoleTorrance Refining Company’s (ToRC) MHF website postings deliberately spread misinformation that is not only misleading, but also dangerous in that it conveys a false sense of safety with MHF.

In one of ToRC’s March 30, 2017 “Setting the Record Straight” videos (scroll down to find them), Tim Shepperd, lobbyist with HF Alkylation Consultants, presents “Why MHF Works.” He features a false analogy between water (a compound) and MHF (a mixture). Fifth-grade science standards in California include: a) that properties of a chemical compound are entirely different from those of its constituents, while b) properties of a mixture retain the properties of its constituents. Water, which is a safe compound of oxygen and hydrogen, is in no way analogous to MHF, which is an unsafe, highly toxic, volatile mixture of sulfolane and hydrofluoric acid.
Continue reading ““ToRC Misinformation in Postings about MHF” by George Harpole, Ph.D.”

Five Points TRAA Science Advisory Panel Members Would Have Liked to Make at the Rule 1410 Refinery Committee Meeting

TRAAThe one-minute allowed each public speaker at the SCAQMD Rule 1410 Refinery Committee Meeting on September 22, 2018 wasn’t enough for TRAA Science Panel members to make substantial contributions to the meeting’s discussion. Here are five points the TRAA Science Panel members would have liked to make:
Continue reading “Five Points TRAA Science Advisory Panel Members Would Have Liked to Make at the Rule 1410 Refinery Committee Meeting”

“HF Boil-Off from an MHF Spill on Hot Highway Pavement” by Jim Eninger, Ph.D.

Jim Eninger“A major trucking spill of MHF onto hot highway pavement could vaporize thousands of pounds of hydrofluoric acid — more than twice the largest release of the 1986 Goldfish test.”

Boil-off is one of several paths that highly toxic Hydrogen Fluoride (HF) can go airborne into the community. In the past, the primary focus has been on the release of superheated HF and Modified Hydrofluoric Acid (MHF) from oil refineries’ settler tanks, because flash atomization causes 100% to form a visible, ground-hugging, highly toxic cloud (see: Flash Atomization of HF and MHF).

Mobil’s original intent to suppress flash atomization was to add sufficient additive that the MHF was subcooled, that is, the boiling point is above the operating temperature. (As we now know, an additive level sufficient for subcooling is incompatible with the alkylation process.) However, even subcooled MHF spraying under high pressure from a rupture of a tank will break up into small droplets. While not nearly as fine as droplets from flash atomization, they nevertheless evaporate. Evaluation of how much was the objective of the large-scale MHF release tests conducted by Quest Consultants in 1993 (see: Superheated MHF Excluded from the Only Large-Scale Test Series).

Another significant path for MHF to go airborne is boil-off. This occurs, for example, if the rupture is in the top section of a settler tank. At the release of pressure, the superheated hydrocarbons (typically isobutane with a boiling point of 11F) and MHF (boiling point of  71F at 6-wt% sulfolane) are highly out of thermodynamic equilibrium at the tank process temperature of 106F. The tank’s contents will boil violently and much will be expelled from the tank before plunging in temperature to the low boiling point of the remaining liquid. The volatile hydrocarbons and MHF will then boil off at a rate governed by the transfer of heat from the environment through the tank walls to the cold liquid.

A second example of boil-off is the primary focus of this post as well as of item III from the post Five Points TRAA Science Advisory Panel Members Would Have Liked to Make at the Rule 1410 Refinery Committee Meeting.  Except for a 15 wt% sulfolane additive used for transportation, which increases the boiling point of HF modestly from 67F to 76F, MHF trucks have none of the other refinery-based mitigation systems. With an air temperature of 87F, highway surfaces can reach 143F. The stored solar heat in a hot highway will vaporize MHF. In addition, the direct heat from the sun over the duration of the spill will add significantly to the boil-off.

Consider a massive spill from a truck transporting 33,000 lbs of 15 wt% MHF (boiling point 76F) onto a sun-baked highway pavement at 140F. The MHF immediately cools the surface of the pavement to its boiling point of 76F. The temperature response of the pavement with typical parameters is shown in Figure 1.

MHF Hot-Highway-Pavement Boiling-Off Transient Temperature Profiles of Pavement
Figure 1 – Temperature profiles in 11-inch-thick pavement initially at 140F with an 15 wt-% MHF spill (boiling point = 76F)

Continue reading ““HF Boil-Off from an MHF Spill on Hot Highway Pavement” by Jim Eninger, Ph.D.”

“Superheated MHF Excluded from the Only Large-Scale Test Series” by Jim Eninger, Ph.D.

MHF Vapor Pressure vs Temperature at various levels of sulfolane. Vapor-pressure curves by Dr. George Harpole are anchored to data from U.S. Patent 5,654,251. Other publicly available data from Material Safety Data Sheets (MSDS) and European Patent EP0796657B1 are shown on the graph. (Click graph for full view.)

On the heels of the 1986 “Goldfish” Release Test of hydrofluoric acid (HF), Mobil engineers sought some method to prevent the HF from forming a ground-hugging toxic cloud. In his illuminating presentation at the September 22, 2018 AQMD Refinery Committee Meeting (Watch: https://youtu.be/qwo08BtEQuM?t=5108), Goldfish Test Principal Investigator Dr. Ronald Koopman stated that the affect of the HF release “was much larger than we had expected and the downwind distance was further than we had expected” and “we found that the HF that was released all flashed into an aerosol and a vapor and so there was nothing that ended up on the collection pan or in that tank — nothing was captured — and that was a great surprise to us.”

In their attempt to do something to prevent the formation of a toxic cloud, in the early 1990s, Mobil engineers settled on the additive sulfolane to suppress the vapor pressure and move HF fluid properties into the subcooled regime, where flash atomization will not occur.  But, as seen in the graph above, at least 45% sulfolane by weight (45 wt%) is needed to achieve subcooled HF at a typical settler-tank temperature of 105F. Although they did not know it at the time,  this level of sulfolane is far higher than the alkylation process can tolerate and still function. In refineries that use MHF, the sulfolane level is as low as 6 wt%. That’s 1 mole% or one molecule of sulfolane for every 100 molecules of HF.
Continue reading ““Superheated MHF Excluded from the Only Large-Scale Test Series” by Jim Eninger, Ph.D.”

“Flash Atomization of HF and MHF” by George Harpole, Ph.D.

Liquid flowing out of a pressurized tank will flash atomize if the liquid superheat (temperature difference above the boiling point) is large enough. Fthenakis claimed, “The critical superheat typically ranges from 5 to 15K [9 to 27°F] for many fluids of interest.”1 Flash atomization is the shattering of liquid jets into very small (often submicron) aerosol droplets due to the rapid vapor bubble growth of boiling. By contrast, subcooled (below the boiling point) liquid jets will still atomize when exiting an orifice, but then to droplets that are orders of magnitude larger, hundreds of microns in diameter.

Read the full article by clicking:
Flash Atomization of HF and MHF (Wonkish)

“Is a phase-out of dangerous chemical used at Torrance, Wilmington refineries getting closer?” – Daily Breeze

The twisted remains of the Torrance refinery in the wake of the 2015 explosion that caused the plant to shut down for months causing gas prices to spike. (02/18/15 Photo by Brad Graverson/The Daily Breeze)

“Activists hope they are edging nearer a long-sought ban on a highly-toxic chemical used at refineries in Torrance and Wilmington after the local pollution watchdog for the first time set a deadline — May 19 — for the industry to produce additional safety information about what’s called modified hydrofluoric acid.”

Read Nick Green’s 9/25/2018 article in the Daily Breeze by clicking:

TRAA Video – Are schools prepared for a Chemical Release?

TRAA Video – Are schools prepared for a Chemical Release?

Click the image above to watch TRAA’s short four-minute video that refutes the notion shelter-in-place can protect students from an accidental release of highly toxic MHF from the Torrance or Valero refineries, the only two in California that use it.

View all of the TRAA Videos by clicking here.